If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+16k=-12
We move all terms to the left:
k^2+16k-(-12)=0
We add all the numbers together, and all the variables
k^2+16k+12=0
a = 1; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·1·12
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{13}}{2*1}=\frac{-16-4\sqrt{13}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{13}}{2*1}=\frac{-16+4\sqrt{13}}{2} $
| 30-4b=14 | | x/3+2=17/12 | | 117+8p=9 | | 5/y=7/y−4 | | 3.25=(1+r)^4 | | (2m/3)-(m/2)=2 | | a÷2a+1-1=6 | | 5=8-5p÷6 | | 56/96=y/36 | | 36/24=15/y | | 12x+8=6x-5 | | 2x^+3x+27=0 | | 2x^2+3+27=0 | | e/5-6=1 | | 15=25((2)^-5k) | | n^2+n=3694 | | x*(x+1)*(x+2)-35904=0 | | (5-7x)/2=2x | | (16x-8)+(8x-24)=(12x-8)-(x-5) | | 48h/4+48h/3=14 | | 6a+1=6.2 | | 6a+1=5.2 | | {a-6}/{6}=10 | | a-6/6=10 | | 2a+4=3.2 | | (5x-3-2)*3=(x+7)*5 | | 43x/50+(26*(x-15))/25=544 | | 7(4c+1)-2(2c-3)=23 | | 7(4c+1)−2(2c−3)=−23 | | -1/2(16-2y=11 | | x−(−4x+2)=13 | | 7(a−3)=8a+2 |